

Ozone Research at Lancaster

People	Research Interests	Projects
Nick Hewitt	O ₃ precursor concentration/flux measurements, measurement campaigns, biogenic VOC	OP3, CLAIRE-UK
Oliver Wild	Chemistry transport models, long-range transport, past/future global O ₃ budget, bVOC, deposition	HTAP, ACITES
Paul Young	Chemistry climate models, global O ₃ hindcasts, bVOC, stratospheric and tropospheric chemistry and climate	ACCMIP, CCMI
Duncan Whyatt	Local and regional modelling, air quality, conditional analysis, Environment Agency links	Urban Futures
Bill Davies, Sally Wilkinson	Stomatal damage from O_3 , biochemical pathways, sustainable agriculture	

Measuring surface-atmosphere fluxes of O₃ precursors

Current activities (NERC-funded):

Emissions of biogenic VOC emissions from tropical forests

- Amazonia, as part of CLAIRE-UK, with Nemitz and Langford (CEH)
- Tower-based virtual disjunct eddy covariance with PTR-MS
- July 2013 for 12 months

Development and demonstration of airborne VOC and NOx flux measurement capability

- Using NERC ARSF Dornier 228 aircraft
- Ionicon PTR-MS and Air Quality Design Inc chemiluminescence NOx sensor
- Virtual disjunct eddy covariance
- June/July 2013 over London and SE England

Modelling surface-atmosphere interactions LANCASTER UNIVERSITY

Biofuel cultivation and the O₃ impacts of bVOC emissions

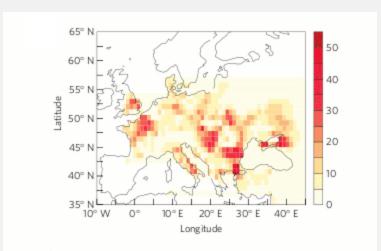
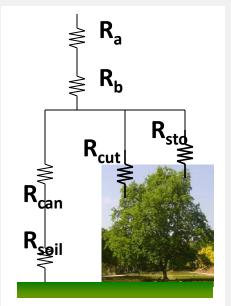


Figure 3 | Impact of increasing ground-level ozone concentrations on crop yield. a, Wheat and maize yield (Mt) in 2000¹¹. b, Changes to the AOT40 metric (accumulated exposure to ozone over a threshold of 40 ppbv) in units of ppmv h (ref. 15). c, Wheat and maize production losses (kt) as a result of planting 72 Mha of SRC.


Ashworth et al., Impacts of biofuel cultivation on mortality and crop yields, Nature Climate Change, 2013

ACITES: Atmospheric Chemistry in the Earth System

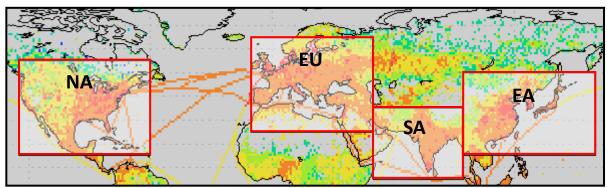
Focus on modelling dry deposition in large-scale models

Aiming for:

- Traceability from process models up to ESM
- Definition of observation-based metrics for testing models

Initial focus: ozone

Co-I: Lisa Emberson

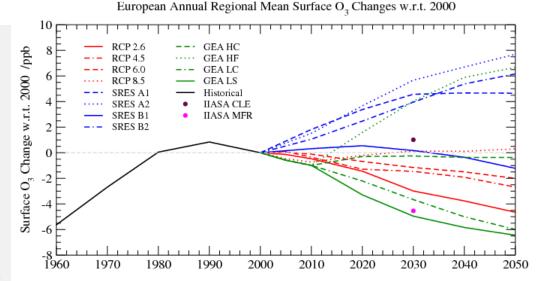

PDRA: Catherine Hardacre

Global Modelling: HTAP

Task Force on Hemispheric Transport of Air Pollution

HTAP: Quantify impacts of major anthropogenic source regions on surface O₃ under 2001 conditions using 20% precursor emission changes, ~30 models contributed.

Fiore et al., 2009

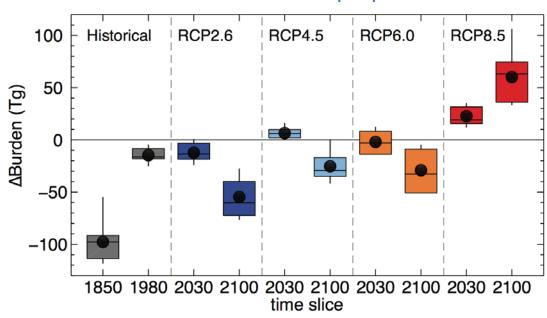

Future changes in surface O₃ and input to policy process

Attributing O₃ changes to changes in anthropogenic precursor sources

Parameterizing O₃ simulations

Quantifying model uncertainty

Wild et al., 2012

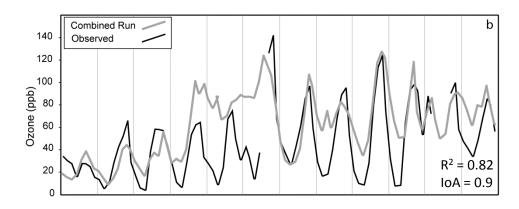

Global Modelling: CCMI

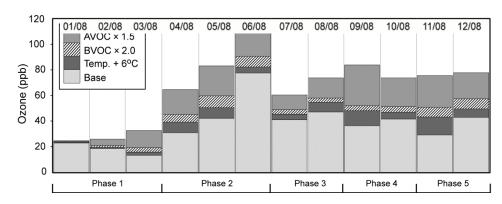
Coupled Chemistry Modelling Initiative: stratospheric and tropospheric global chemistry-climate models (successor to ACCMIP and CCMVal projects)

- What drove the last 40 years of composition change?
- What controls preindustrial and future projections of ozone?
- What drives the model spread?

ACCMIP model Δ O3 tropospheric burden

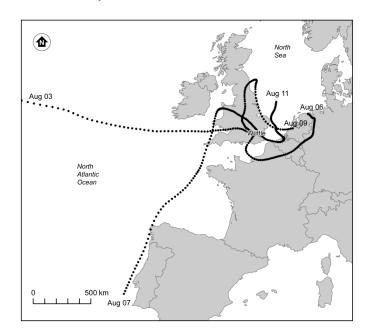
Young et al. 2013, ACP


First meeting in Boulder 13-15 May 2013
More information: www.igacproject.org/CCMI
Results to inform WMO ozone report


Looking for observations that provide constraints on key tropospheric processes!

Exploring the origins of elevated ozone at Writtle, August 2003

Selected inputs to the ELMO model (Lagrangian CTM) scaled to reproduced peak ozone levels recorded at Writtle during TORCH campaign August 2003



Strong, J., Whyatt, J.D., Metcalfe, S.E., Derwent, R.G and Hewitt, C.N., 2013. Investigating the impacts of anthropogenic and biogenic VOC emissions and elevated temperatures during the 2003 ozone episode in the UK. Forthcoming in **Atmospheric Environment**

Source attribution studies

- aVOC emissions (UK+EMEP) x 1.5
- bVOC emissions (UK+EMEP) x 2.0
- Temperature + 6°C

Plans, Aspirations, Needs, Barriers...

- Deeper understanding of role of O₃ in the Earth System
 - Further measurements and modelling of surf-atmos interactions
- Improved policy relevance of model results
 - Better understanding/assessment of impacts (health/crops)
 - Clearer quantification/attribution of observed O₃ trends
- More critical testing of key processes in models
 - Need more process-targeted observations